Rapid but not slow spinal cord compression elicits neurogenic pulmonary edema in the rat.

نویسندگان

  • J Sedý
  • J Zicha
  • J Kunes
  • P Jendelová
  • E Syková
چکیده

The development of neurogenic pulmonary edema (NPE) can be elicited by an immediate epidural balloon compression of the thoracic spinal cord. To evaluate whether a slower balloon inflation could prevent NPE development, we examined the extent of NPE in animals lesioned with a rapid (5 microl - 5 microl - 5 microl) or slow rate (3 microl - 2 microl - 2 microl - 2 microl - 2 microl - 2 microl - 2 microl) of balloon inflation. These groups were compared with the NPE model (immediate inflation to 15 microl) and with healthy controls. Slow balloon inflation prevented NPE development, whereas the pulmonary index and histology revealed a massive pulmonary edema in the group with a rapid rate of balloon inflation. Pulmonary edema was preceded by a considerable decrease in heart rate during the inflation procedure. Moreover, rapid inflation of balloon in spinal channel to either 5 microl or 10 microl did not cause NPE. Thus, a slow rate of balloon inflation in the thoracic epidural space prevents the development of neurogenic pulmonary edema, most likely due to the better adaptation of the organism to acute circulatory changes (rapid elevation of systemic blood pressure accompanied by profound heart rate reduction) during the longer balloon inflation period. It should be noted that spinal cord transection at the same level did not cause neurogenic pulmonary edema.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of sympathetic nervous system in the development of neurogenic pulmonary edema in spinal cord-injured rats.

The pronounced activation of sympathetic nervous system is a necessary prerequisite for the development of neurogenic pulmonary edema (NPE) in rats with balloon compression of spinal cord. In this study we examined whether this is a consequence of rapid activation of spinal pathways leading to sympathetic venoconstriction, blood pressure rise, and reflex bradycardia. We found that NPE developme...

متن کامل

Neurogenic pulmonary edema induced by spinal cord injury in spontaneously hypertensive and Dahl salt hypertensive rats.

Neurogenic pulmonary edema (NPE), which is induced by acute spinal cord compression (SCC) under the mild (1.5 %) isoflurane anesthesia, is highly dependent on baroreflex-mediated bradycardia because a deeper (3 %) isoflurane anesthesia or atropine pretreatment completely abolished bradycardia occurrence and NPE development in rats subjected to SCC. The aim of the present study was to evaluate w...

متن کامل

Hemodynamic parameters and neurogenic pulmonary edema following spinal cord injury: an experimental model.

Neurogenic pulmonary edema is a serious and always life-threatening complication following several lesions of the central nervous system. We report an experiment with 58 Wistar-Hanover adult male rats. Two groups were formed: control (n=4) and experimental (n=54). The experimental group sustained acute midthoracic spinal cord injury by Fogarty's balloon-compression technique containing 20 micro...

متن کامل

The role of nitric oxide in the development of neurogenic pulmonary edema in spinal cord-injured rats: the effect of preventive interventions.

Neurogenic pulmonary edema (NPE) is an acute life-threatening complication following an injury of the spinal cord or brain, which is associated with sympathetic hyperactivity. The role of nitric oxide (NO) in NPE development in rats subjected to balloon compression of the spinal cord has not yet been examined. We, therefore, pretreated Wistar rats with the NO synthase inhibitor N(G)-nitro-L-arg...

متن کامل

OMENTAL GRAFT APPLICABILITY IN EXPERIMENTALLY INDUCED SPINAL CORD COMPRESSION IN RATS

One of the most important factors responsible for axonal degeneration following spinal cord trauma is ischemia produced by cord compression. Previous studies have revealed that omental transposition upon the injured site of the spinal cord could be beneficial in the induction of partial improvement of neuroelectrical and motor function in laboratory animals. The purpose of this study is to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological research

دوره 58 2  شماره 

صفحات  -

تاریخ انتشار 2009